Analysis with the Mini

David Nathan Brown, LBNL

- The Mini in General

Comparing the Mini to the Micro for Analysis

- Known Problems and Bugs
- Development Schedule
- Conclusions

The Mini

- Stores detailed detector information
- ⊙ Tracking hits, Dirc hits, Emc crystals, ...
- Supports a detailed event display (wired)
- Scanning is a physics analysis tool
- Supports detailed detector studies
- Supports offline detector calibration
- ⊙ Svt local alignment, Dch dE/dx, Dch T-to-D, ...
- Supports Detailed Analysis
- Study systematic effects of conditions errors, algorithm changes, detector imperfections,...
- Supports Analysis
- BetaMini provides a Micro-compatible interface
- Solution
 Solution
 Is larger than the Micro
- 6.5KBytes/event vs ~2KBytes/event (compressed)

Market States

Stores Reco Objects

0

- ⊙ TrkRecoTrk, EmcCand,...
- BtaCandidates are made using a 'Loader' module
- XxxQual are created by BtaMiniMicroAdapter

© Data can be read at several Levels of Detail

- Refit (Detailed analysis)
- Refit tracks from hits, ...
- Can follow conditions changes (alignment, ...)
- ◆ Can read events at ~5 Hz

Cache (Analysis)

- Read 'fit' parameters directly
 Tracks, PID consistency, ...
- Can read events at ~20 Hz

Micro

Stores BtaCandidates

- ⊙ '4-vectors', XxxQual,...
- No link back to reco objects
- BtaCandidates are read directly
- XxxQual are read directly
- Data are read as stored

<u>S</u>

- 0 are stored All '5' track fit mass hypos
- Correct' P at the origin due to dE/dx
- scattering
- **@** into the detector Track fits can be extended
- Using the reco Kalman fit
- the beampipe have 'correct' momentum
- **@** All Emc cluster moments can be computed

Micro

- **@** Only the

 mass track fit hypo is stored
- Only the track parameters at the origin are stored
- 0 Only some Emc cluster moments are stored

SVT dE/dx

- Momentum for SVT dE/dx is now calculated at layer 3
- Improves Slow Pion identification
- Not stored on the Micro
- Consistencies are right, expected dE/dx value is wrong
- Stored correctly on the Mini

Plots by G. Lynch

Known Problems

- © Calorimeter information (CalQual) was missing on track-based BtaCandidates
- Fixed in 12.3.4
- Albedo tracks in the Dch
- Readback performance is not as good as the Micro
- BtaMicro adapter is not natural to the Mini
- BtaCandidate is not optimized for the Mini
- The complete Mini is only available for 12-series production data (just starting)

Development Schedule

- Persistent composites (end of 2002)
- Store composites (daughters + vertexer + constraints) to avoid rerunning combinatorics (G. Finocchiaro)
- Reduced Minis (end of October)
- Store only user-selected lists of candidates
- Selectively remove hit-level data ('cache' data only) • Reduces output size by a factor of ~3
- Can be used for making private skims
- BetaMini performance optimization (Spring 2003)
- Redesign Beta around the Mini (J. Tinslay, A. Mohktarani)
- Expect to achieve read rates of ~100Hz
- Port of the Mini to Kanga (Root IO) file format
- Has been investigated, no showstoppers

Conclusions

- The Mini is ready for use
- Basic functionality is supported
- 12-series data will soon start to appear
- Needs more 'field testing'
- The Mini supports important analysis functions currently missing at BaBar
- Event display, detailed analysis, multiple mass hypos, ...
- The Full Mini is too large to be the primary analysis format of BaBar
- A Reduced Mini might satisfy BaBar's constraints

